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Abstract. After a short presentation of the toroidal moments and the necessity to introduce
them in the multipole expansion of current density, the correspondent quantum operators are
introduced. The toroidal momentum operator (the quantum operator corresponding to the lowest-
order toroidal multipole) is analysed. A natural set of coordinates is found. Using this set of
coordinates it becomes possible to find the eigenvalues and a complete orthonormal set of
eigenfunctions of the projection of this operator on the Oz axis.

1. Introduction

Although the multipole decomposition of charge and current densities is almost as old as
classical electrodynamics, a whole class of terms has remained unknown for a long time.
The history of toroidal moments began with Zeldovich’s pioneering work [1]. He was the
first to note that a closed toroidal current (which cannot be reduced to a usual charge or
magnetic multipole moment) represents a certain new kind of dipole.

After the discovery of parity violation in weak interactions, he considered a new kind
of electromagnetic interaction (invariant under time reversal, but odd under parity) of the
form

H ∼ SJext = S(rotHext)

whereH is the Hamiltonian,S the spin operator, whileJext and Hext represent the
external current and magnetic field. He observed that, if one allows for violations of the
discrete spacetime symmetries, a spin-1

2 particle might possess, besides the usual electric and
magnetic dipole moments, a third kind of dipole characteristic, which was named ‘anapole’
to distinguish it from the usual electric and magnetic dipoles.

In the work by Yu M Shirokov, A A Tcheshkov, and V M Dubovik (summarized in
the reviews [2, 3]) it has been shown that there is a whole independent class of (‘toroidal’)
multipole moments and Zeldovich’s ‘anapole’ is a combination of the first term of this class
and magnetic moments. A complete parametrization for the most general configuration of
charges and currents has been obtained in terms of three families of electric, magnetic and
toroidal multipole moments and distributions, generated by the three independent scalar
functionsη, ψ and χ existing in the problem. Mean radii of various orders can also be
unambiguously defined for any fixed multipolarity order (2l pole order,l = 1, 2, . . .) and
type (electric, magnetic and toroidal) which, together with the multipole moments, achieve
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a full characterization of an arbitrary kind of source. Moreover, the toroidal moments
represent measurable quantities, as we shall see in the next section.

However, the importance of the toroidal moments is not just in the description of the
current sources. They also represent measurable quantities with specific modes of interaction
with the electromagnetic field. For example, as Dubovik and Tugushev wrote in [3], the
toroidal dipole moment is the only characteristic having an interaction energy from which
one can directly measure the displacement current. From this principle a new type of
electromagnetic motor could also be constructed (see [3]).

In the next section, after a brief discussion concerning the multipole decomposition of
the charge and current densities, we associate quantum operators to the multipole moments.
Although this procedure is general, we apply it only for the toroidal dipole momentum (this
operator has already been used, for example, in [6]). The necessity of studying this operator
further is obvious, considering its large applicability in physics at any scale (subnuclear
[4, 5], nuclear [4], atomic [6], molecular and condensed matter physics [3]). However, the
most exciting fact for us is that there is a whole class of particles (the Majorana fermions and
self-conjugate bosons [4, 5]) which are not allowed to possess any electromagnetic structure
other than toroidal multipole moments. This comes from CPT invariance alone [7].

Meanwhile, the most important facts we need to know about an operator are its spectrum
and its eigenfunctions. Consequently, we shall solve this problem for the case of the toroidal
momentum operator in section 3.

2. Toroidal momentum in classical electrodynamics and quantum mechanics

It is not our aim here to discuss the expansion in multipole moments in detail. We advise
interested readers to see the very good paper of Dubovik and Tugushev [3]. Here we just
state that (see also [4, 6]) in the multipole expansion of the current density, beginning with
second order, apart from the usual electric and magnetic multipoles, the toroidal moments
appear:

ji(x, t) = Q̇iδ
3(x)−

[
Q̇ik − cεiklMl + δik

6
˙̄r2
]
∂kδ

3(x)

+1

2

[
2Q̇ijk + 1

10
(δij ˙̄r2

k + δik ˙̄r2
j )−

c

3
(εij lMkl + εiklMjl)

+c(δikTj + δijTk − 2δjkTi)

]
∂j ∂kδ

3(x)+ · · · . (1)

In the expression above,Q andM represent electric and magnetic quantities andr denotes
various mean radii (or time derivatives of these when overdotted). Apart from these usual
terms new quantities appear: toroidal moments. In formula (1) we have the lowest-order
terms from the whole class of these moments:

Ti = 1

10c

∫
[ξi(ξj)− 2ξ2ji ] d3ξ. (2)

These terms could be interpreted as the projections of a vectorT on the Cartesian axis. A
straightforward interpretation of this vector is obtained if we expand the electromagnetic
interaction energy:

H =
∫ (

ρϕ − 1

c
jA

)
d3x.
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The interaction term corresponding to the toroidal momentum is [3, 4]

H(t)tor = − T (t)[rot rotAext(x, t)]x=0

= − T (t)[rotHext(x, t)]x=0

= − T (t)
[

4π

c
Jext(x, t)+ 1

c
Ḋext(x, t)

]
x=0

.

As we can see, the toroidal momentum interacts with the external conduction (Jext) and
with the external displacement (Ḋext) currents. The strength of the interaction is measured
by the force momentum [4]:

F = T × (rotHext)

= T ×
(

4π

c
Jext+ 1

c
Ėext

)
.

The toroidal moments interact with the external field only if it overlaps with the source of
the latter.

Figure 1. Toroidal solenoid.

As an example let us compute the toroidal momentum of a toroidal solenoid of large
and small radiiRT and rT, and withN turns of winding (see figure 1). If the symmetry
axis of the toroidal solenoid lies along thez axis, then the projections of the toroidal and
magnetic moments are (consideringI the linear current in the wire)

T1 = T2 = 0 M1 = M2 = 0

T3 = IN
(
πr2

TRT

10c

)
= IN VT

5πc
M3 = Iπ(r2

T + 2R2
T).

If we replace the toroidal solenoid withN closed rings displayed in the same toroidal
form, the projections become

T1 = T2 = 0

T3 = IN πr
2
TRT

10c
= IN VT

5πc
M1 = M2 = M3 = 0.

Equation (2) is identically verified by the singular current density

jT(ξ) = c rot rotT δ3(ξ)

(with T a constant vector), which can be viewed as the current density of an elementary,
point-like toroidal dipole [3, 4].
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The above intuitive calculations lead us to the conclusion that the toroidal momentum
can be viewed as a coil of magnetic field (in analogy with the magnetic moment, which is
generated by a coil of current) and interacts with the sources of the electromagnetic field
instead of the field itself. We now show further that this quantity also has an analogue in
quantum mechanics.

Let us denote by9(x, t) the wavefunction describing the state of a quantum particle.
The current density corresponding to it (in the absence of an external electromagnetic field)
has the form

j(x, t) = ih̄

2m
(9(x, t)∇9∗(x, t)−9∗(x, t)∇9(x, t)).

As in the classical case, we can perform a multipole decomposition of the current
densityj, and the toroidal momentum, computed according to (2), is

Ti = 1

10c

∫
[ξi(ξj)− 2ξ2ji ] d3ξ

= 1

10mc

∫ ∑
k=1,2,3

{
(ξiξk − 2ξ2δik)

[
ih̄

2

(
9(ξ, t)

∂

∂ξk
9∗(ξ, t)

−9∗(ξ, t) ∂
∂ξk

9(ξ, t)

)]}
d3ξ.

Because of the hermiticity of the operatorsT̂i (defined as in [6])

T̂i = 1

10mc

∑
k=1,2,3

(xixk − 2x2δik)P̂k (3)

which we interpret as the projections of the ‘toroidal momentum operator’, the matrix
elements of the toroidal momentum between any states can be written as

[Ti ]mn =
∫
9∗n(ξ, t)T̂i(ξ)9m(ξ, t)d3ξ

or, in Dirac notation,

[Ti ]mn = 〈n|T̂i |m〉.
So we can associate with the classical toroidal momentum (corresponding to a current

density) a quantum operator, called the toroidal momentum operator. The physical
significance of this operator is straightforward. It should be noted that in expression (3)
the electromagnetic coupling constante does not appear (as it does in [6]). We defined the
operator in this way to emphasize that this is a characteristic of the particle state and not
just a new kind of electromagnetic interaction.

3. The eigenvalues and eigenfunctions of the toroidal momentum operator

First we have to see if the projections of the toroidal momentum operator commute with
each other. A straightforward calculation leads us to the result:

[T̂i , T̂j ] = − 6ih̄

(10mc)2
x2εijkL̂k.

A consequence of the above expression is that we cannot find a set of eigenfunctions
common to two of the projections in the same time. We therefore have to solve the problem
for just one of them. We choosêT3.
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We can also verify thatT̂ 2 and T̂i are not independent variables:

[T̂ 2, T̂i ] = − 32ih̄

(10mc)2
x2[ih̄T̂i − εijkL̂j T̂k].

Fortunately from the commutator

[T̂i , L̂j ] = ih̄εijkT̂k (4)

we can see that̂T3 commutes withL̂3, so we can try to find a common set of eigenfunctions
for these two operators.

3.1. A ‘natural’ set of coordinates for the toroidal momentum operator

Considering the commutator rules (4), we expect thatT̂3 has a simpler form in cylindrical
or spherical coordinates. This is indeed true and from now on we shall work in cylindrical
coordinates:

T̂3 = −ih̄

10mc

[
ρz

∂

∂ρ
− (2ρ2+ z2)

∂

∂z

]
.

We can see that the variableϕ does not occur in the expression forT̂3.
In order to solve the problem we try to find a set of coordinates in whichT̂3 has a very

simple form. One of the possibilities is

T̂3 = −ih̄

10mc

[
zρ
∂

∂ρ
− (2ρ2+ z2)

∂

∂z

]
= −ih̄

10mc

∂

∂u
. (5)

If we note the new set of variables by (k, u, ϕ), then, from equation (5), we find the
following system of differential equations,

∂ρ

∂u
= ρ(k, u, ϕ)z(k, u, ϕ)

∂z

∂u
= −2ρ2(k, u, ϕ)− z2(k, u, ϕ) (6)

and the corresponding symmetric system:

dρ

ρz
= − dz

2ρ2+ z2
= du.

From the last system the differential equation

dz

dρ
= −2ρ2+ z2

ρz

follows immediately, with two solutions:

z+(ρ) =
√
−ρ4+ C
ρ

z−(ρ) = −
√
−ρ4+ C
ρ

. (7)

From the above equations we can findρ as a function ofz (in this case the solution is
unique, considering thatρ > 0):

ρ =
√
−z2+√z4+ 4C

2
. (8)
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Derivatives along the curves defined by equations (7) and (8) (see figure 2) correspond
to derivatives with respect tou (asu was defined in (5)) in the space of the new variables,
(k, u, ϕ). Therefore along these curvesk andϕ are constants, andu varies in some range
(umin, umax) which also depends onk andϕ.

1 2

-30

-20

-10

10

20

30

Figure 2. Curves corresponding to the new variableu, for C = 1 andC = 16 (or k = 1 and
k = 2).

A simple inspection of equations (7) and (8) suggests that we put the variablek in
correspondence with the integration constantC. For simplicity we choose

k = C1/4

and from equations (7) or (8) we find

k = (ρ2z2+ ρ4)1/4. (9)

Now we can findu as a function ofk andρ, or k andz. To do this, we make use of
equations (7) and (8) and we again write system (6):

∂ρ

∂u
= ±

√
−ρ4+ k4

∂z

∂u
= −

√
z4+ 4k4. (10)

Once k is fixed, u can be determined as a function ofρ or z, but it will depend on an
arbitrary constant. Let us choose this constant in such a way thatu(k, z)|z=0 = 0 and
u(k, ρ)|ρ=k = 0 (k represents the maximum value ofρ on the curveρ = ρ(z, k), k being
kept constant, as we can see from equations (7), (8) or (9)). Considering that we are
working in aϕ = constant plane, we shall not mention this variable any longer to simplify
the expressions. Using the above conventions we can write the solutions of system (10) as

u(k, z) = −
∫ z

0

1√
t4+ 4k4

dt (11)
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u(k, ρ) = ±
∫ k

ρ

1√−t4+ k4
dt. (12)

We now try to write the solutions above in a simpler form. We proceed with (12):

u(k, ρ) =
∫ k

ρ

dt√
k4− t4 =

∫ k

0

dt√
k4− t4 −

∫ ρ

0

dt√
k4− t4 .

After the substitutiont → f (x) = kx1/4, the last integral on the right-hand side of the
above expression becomes∫ ρ

0

dt√
k4− t4 =

1

4k

∫ (ρ/k)4

0
(1− x)−1/2x−3/4 dx = 1

4k
B(ρ/k)4

(
1

4
,

1

2

)
whereBx(p, q) is the incomplete Beta function:

Bx(p, q) =
∫ x

0
tp−1(1− t)q−1 dt

B1(p, q) =
∫ 1

0
tp−1(1− t)q−1 dt = 0(p)0(q)

0(p + q) .

With this notation,u can be written as

u(k, ρ) = 1

4k

[
B1

(
1

4
,

1

2

)
− B(ρ/k)4

(
1

4
,

1

2

)]
= 1

4k
B1

(
1

4
,

1

2

)[
1− I(ρ/k)4

(
1

4
,

1

2

)]
(13)

with the evident notation

Ix(p, q) = Bx(p, q)

B1(p, q)
.

We can also obtain the expression foru, whenu < 0, by changing the sign on the right-hand
side of formula (13). If in (13) we replacek with expression (9), we findu as a function
of ρ andz.

Another expression foru can be obtained from equation (11):

u(k, z) = ± (−1)1/4

4
√

2k

∫ z4/(4k4)

0
(1− x)−1/2x−3/4 dx

where the ‘+’ sign is for z 6 0 and the ‘−’ sign is for z > 0. We shall not use this formula
further.

From the analysis of equation (13) we observe thatu takes values in a finite interval
which depends onk,

u ∈ (−a(k), a(k))
where

a(k) ≡ Ca

k

= 1

4k
B1

(
1

4
,

1

2

)
= 1

4k

0( 1
4)0(

1
2)

0( 3
4)

∼ 1.311 03

k
.

We can see thata(k) behaves like 1/k (figure 3). For this reason the eigenfunctions of
the toroidal momentum operator, which will form a complete set of orthogonal functions,
will include a δ Dirac function ofk.
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-10
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10
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Figure 3. The limits of the intervals in whichu takes values, at fixedk.

The last problem we are left with, in order to define the transformation completely, is
to calculate the expression of the elementary volume dx1 dx2 dx3 in the new coordinates:

dx1 dx2 dx3 =
∥∥∥∥∥∥
∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

∥∥∥∥∥∥ dξ1 dξ2 dξ3.

This can be done easily in two (obvious) steps:

dx1 dx2 dx3 = I1 dρ dz dϕ = I1I2 dk du dϕ.

It is well known thatI1 = ρ, so we are just left with findingI2. A straightforward, but
tedious calculation, in which we make use of the equations (11), (12) and (10), gives us the
result:

I2 = 2k3

ρ
.

For the total transformation, from the set of variables(x1, x2, x3) to (k, u, ϕ), we obtain
the very simple expression

I = I1I2 = 2k3.

This function could be interpreted as a weight for the scalar product in the space of the new
variables, introduced in order to preserve the scalar product.

So we have defined a transformation from the variables(x1, x2, x3) to the variables
(k, u, ϕ). The functions in the(k, u, ϕ) variables are defined in a domainD = {(k, u, ϕ)|k ∈
[0,∞), ϕ ∈ [0, 2π), u ∈ (−a(k), a(k))} (see figure 3) and have the squared modulus
integrable with weightI . If we make the prolongation of these functions by changingD
in S = {(k, u, ϕ)|k ∈ [0,∞), u ∈ (−∞,+∞), ϕ ∈ [0, 2π)}, and settingf (k, u, ϕ) = 0
if (k, u, ϕ) 6∈ D, then we obtain a subspace ofL2

I (S) (which represents the Hilbert space
of functions defined inS and with the squared modulus integrable with weightI ). We
note this subspace byL2

I (D) and notice that the transformation fromL2(R3) to L2
I (D) is a

unitary one.
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3.2. The determination of the eigenvalues and eigenfunctions of the toroidal momentum
operator

In this subsection we determine a complete set of orthogonal functions, formed by
eigenfunctions of the toroidal momentum operator.

As we stated at the beginning of this section (see (4)), we can find a common set of
eigenfunctions for both thêT3 projection of the toroidal momentum operator and theL̂3

projection of the angular momentum operator. Because of the very simple form of theT̂3

operator in the(k, u, ϕ) variables, we can find eigenfunctions of the form

T (k, u, ϕ) = K(k)M(ϕ)T3(u)

whereT3 is an eigenfunction of theT3 operator, and depends only on theu variable,M is
an eigenfunction of theL3 operator (which depends on theϕ variable), andK is a function
which depends on thek variable and is still undetermined.

We already know thatM(ϕ) = exp(imϕ/h̄). T3 satisfies the differential equation

T̂3T3(u) = −ih̄

10mc

∂

∂u
T3(u) = t3T3(u)

with the evident solution

T3(u) = exp

(
i

h̄
10mct3u

)
.

Let us try to impose the normalization condition, denoting bya and b two functions
belonging to the complete orthogonal system:

P =
∫
K∗a(k)M∗a(ϕ)T ∗3a(u)Kb(k)Mb(ϕ)T3b(u)2k

3 dk du dϕ

= δmambδ(ka − kb)δ(t3a − t3b).
After some computation (and according to [9], ch VI.6) we find thatK should be of the
form

K(k) ∼ 1

k3/2
δ(k).

However, this is a very unsuitable form because we are forced to work only with functions
defined on the Oz axis. Thus we impose another condition:

P = δmamb
∫
K∗a(k)Kb(k)2k3

{∫ a(k)

−a(k)
exp

[
− i

h̄
10mc(t3a − t3b)u

]
du

}
dk

= δmambδ(ka − kb)δt3a t3b .
This condition imposes forK the expression

Kk0 ∼
1

k
δ(k − k0)

and quantifies thet3 values at fixedk0. These values are obtainable from the condition∫ a(k)

−a(k)
exp

[
− i

h̄
10mc(t3a − t3b)u

]
du ∼ δt3a t3b

which gives

t3k0 =
h̄

10mc

k0

Ca
Nπ + constant

where the constant is arbitrary, common to all the functionsT3(u) in a set, for eachk0. This
is the case of a hypermaximal operator.
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The normalization constant is very simple to determine:

Kn = 1

2
√
Ca
.

So we have determined a complete orthogonal set of functions which span the Hilbert
spaceL2(R3). These functions are also normalized:

T (k, u, ϕ) ≡ Kk0(k)Mm(ϕ)T3t3k0(u)

= 1

2
√
Ca

1

k
δ(k − k0) exp

(
i

h̄
mϕ

)
exp

(
i

h̄
10mct3k0u

)
.

The eigenvalues of the toroidal momentum operator forms a continuous spectrum from−∞
to +∞.

The δ Dirac function appearing in the expression above is imposed by the requirement
that the set should be complete and orthogonal inL2(R3). Otherwise the eigenfunctions
could have the general formT (k, u, ϕ) = f (k, ϕ)exp(10mct3ui/h̄). Other forms for
the complete set of eigenfunctions could be obtained if we are working in some specific
subspaces ofL2(R3), for example, subspaces of functions defined in some domainDu ⊂ R3,
with the property that its analogue in the space of(k, u, ϕ) variables is bounded from above
by a fixed value of ‘u’ and from below by ‘−u’, but we do not intend to analyse various
special cases here. Examples of curvesu = constant are plotted in figure 4.

0 2 4 6 8
-100

-50

0

50

100

Figure 4. Curvesu(ρ, z) = constant, in aϕ = constant plane.
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